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STABILITY OF VISCOUS WALL JET 

O. S. Ryzhov UDC 533.6.12 

An incompressible, viscous plane jet along a rigid wall is considered. The theory of 
free interactions between the boundary layer and the external potential flow is used to study 
its stability. The dispersion equation relating the frequency of free oscillations to the 
wave number is identical to the equation that governs the stability of Poiseuille flow in an 
infinite channel. The properties of the solution to the problem of harmonic disturbances gen- 
erated by the oscillator used in the test setup depend on the location of the roots of the 
dispersion equation. It is observed that the analysis of the temporal amplification of dis- 
turbances can be carried out using Prandtl's boundary layer equations with self-induced pres- 
sure. 

i. Consider an incompressible, viscous plane jet along a rigid wall. The entire jet 
thickness can be treated as a boundary layer whose dimensionless velocity distribution U, at 
any section is shown in Fig. i. It is significant that the velocity, as well as its deriva- 
tive with respect to the normal coordinate Yz, are zero at the outer edge of the boundary 
layer. Such velocity profiles are typical not only for jets; as is well known, similar veloc- 
ity profiles are obtained in steady flow on a heated vertical plate [i] and on a rotating 
disk [2]. The theory of free interactions between the boundary layer with the external po- 
tential flow has been used to study the characteristics of these flows near the leading and 
trailing edges of solid bodies [3]. More examples are considered in [4], in which a solution 
of Prandtl's equation has been obtained to describe the separation of the jet and the subse- 
quent development of the recirculating zone. This theory is applied to analyze the stability 
of the jet with respect to large wavelength disturbances, with the critical layer of neutral 
disturbances close to the wall [5, 6]. These disturbances determine, in the linear approxi- 
mation, the asymptote of curves relating wave number to Reynolds number, as the latter goes 
to infinity [7]. 

The whole velocity field is divided into two regions to achieve this objective. Accord- 
ing to the principles of free interaction theory [8, 9], the effect of viscosity on the struc- 
ture of the disturbed flow in the upper region 1 is negligibly small. Let us introduce a 
small parameter e = Re-'/~, where the Reynolds number Re = P*UM*L*/X* is expressed in terms 
of density p*, the coefficient of viscosity X*, the maximum UM* in the jet, and its charac- 
teristic length L*. The time t*, and cartesian coordinates x*, y* are given by the follow- 
ing equations: 

L* 
t* = ~ , ,  (t o +~4tl) ,  x* = L*  (x o + ~ z l )  , y* = ~:L*yl ,  (1.1) 

~m 

where to and xo are arbitrary constants. The pressure p* and the velocity components Vx* , 
Vy* are expressed by the asymptotic series: 

~*U *~r$4n Ct . .  P * = P * §  ,~L FI~ , , x l ,  YO+ .], 

* * U - - .  * U * [ 8  3 (ts, xz, Y l ) + . - . ] ,  ( 1 . 2 )  rx = U m  [ i (Yl) q-  s~ul (tl, z l ,  Yl) -4- ], v~ = t 'l 

where p~ is the pressure at the outer edge of the jet and the quantity U~(YI) is the velocity 
profile in the initial undisturbed flow. 

Equations (i.i) and (1.2) are substituted into the Navier--Stokes equations and only the 
principal terms in the resulting equations ~re retained; we obtained [3, 4] 
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Fig. I 
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Here the function P(t~, x,) is the pressure disturbance along the rigid wall, and the func- 
tion A2(t,, x,) is the instantaneous displacement of the streamline. Both these functions 
are arbitrary. Periodicity along the streamwise coordinate xt issuperimposed on them to 
study the flow stability. The problem analyzed is quasisteady: time plays the role of a 
parameter [10-12]. 

Disturbances should decay outside the boundary layer. In view of the above assumptions 
(U, § 0, dUt/dY, § 0 as y, § ~), the velocity components u,, v, automatically satisfy this 
requirement. The condition of the pressure disturbance p, going to zero leads to the equa- 

i ,  =-- = Ut(YI)dY~, which relates the functions P and Au. The numerical vai- 
l 

0 

ue of A depends on the velocity distribution across the boundary layer in the basic problem. 

2. The fluid viscosity in the thin wall region 2 has a critical influence on the dis- 
turbance structure. Here, the independent variables are 

t* = - - ~ ( t  o + e4t2), x* = L* (xo + eSx2), Y~: = egL*Y~, ( 2 . 1 )  

and the required functions are 

p* = p*~ + p'U*.,' [e4p~ (L., x~, g~) 5 .. ], (2.2) 

v~ = U,~ [e~u~ (t~, z2, y~.) + . . .  ], vu = U m  [aBv2 (t~, x~, g~) + . . .  ] .  

Following the usual procedure for the free interaction problem [8, 9], the flow is as- 
sumed to have a layered structure and hence the scales for both time and the streamwise co- 
ordinate are chosen identical in both regions but their thickness is evaluated independently. 
Hence t, = t2, x, = x2, but yl ~y2. The substitution of Eqs. (2.1), (2.2) into the Navier-- 
Stokes equations results in the following set of equations for the principal terms: 

Ou~ 8v z Ou~ Ou~ Ou 2 02u2 ozo + ~ O, ~  = 0 ,  oh ' . = ~ <q-u=~-u s ay, -- Oz~. ~ oy~" (2.3) 

These are Prandtl's boundary layer equations, though the pressure p2 in them is not spe- 
cified a p~o~ but is determined as a result of the solution of the complete problem. In 
fact, matching with the series expansion for the outer region, in which Pt is expressed in 
terms of the first equation in (1.3) and Eq. (1.4), leads to the expression 

P~ ---- -- Aa2A2/Ox~. (2.4) 

Besides, matching the principal terms for the streamwise velocity components leads to 
the limiting condition 

u2 -- ~Y2 + ),A2(t~, xJ  for g2 -~ co (2.5) 
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with the constant ~ = dUx(0)/dyx. The remaining boundary conditions for the system of Eqs. 
(2.3), (2.4) are expressed in terms of the requirement of periodicity of the functions along 
the streamwise coordinate xx and the equations u2 and v= = 0 at Y2 = 0 that ensure no slip 
conditions at the solid surface. It must be observed that according to Eq. (2.4), the pres- 
sure disturbance is proportional to the streamline curvature [3, 4] and not to the integral 
of their gradients as in the case of the boundary layer on a body in a uniform flow [9]. 

It is easy to observe that the system of equations (2.3) is invariant to the similarity 
transformation 

t2 ~ A2/Tl-s/Tt,  x2 = As/7~-5 /7x ,  Y2 = A1/rk-~/TY, 

P~ : A~IT~ITp, A2 = AVT~-alrA,  u2 = AXlT~alTu, ( 2 . 6 )  
= A - 1 1 7 ~ a l V v ,  

the coefficient A is eliminated from Eq. (2.4) using this transformation, whereas the con- 
stant ~ is eliminated using the limiting condition in Eqo (2.5). In what follows we shall 
consider the transformation (2.6) satisfied and drop the subscript 2 from both the indepen- 
dent variables and the unknown functions. Using a new set of reference quantities it is 
necessary to put A = I = 1 in Eqs. (2.4), (2.5). 

3. Following the usual procedure for stability theory [7], the solution describing free 
fluctuations of viscous fluid is sought in the form 

p _ k2 A ak~e~t+~ ae~t+kx df ake~t+kx/ . . . .  , u = y - W '  v = (y). (3.1) 

Series (3.1) is substituted i~to the system of equations (2o3), (2.4), and the result- 
ing equations are linearized with respect to the amplitude of disturbances a. The following 
is the resulting third-order ordinary differential equation for the function f: 

dq /dy  3 - -  (~  } ky )d l /dy  + k / - -  k 3 = 0, ( 3 . 2 )  

wh ich  i s  c o n v e n i e n t l y  a n a l y z e d  [13] i n  t h e  complex  p l a n e  z = ~k - 2 / 3  + k X / S y .  I n  o r d e r  t o  s e p -  
a r a t e  t h e  s i n g l e - v a l u e d  b r a n c h  o f  t h e  f u n c t i o n  k l / 3 ,  we i n t r o d u c e  a c u t  i n  t h e  complex  p l a n e  
k a l o n g  t h e  n e g a t i v e  r e a l  a x i s  and s e t  n ~ < a ~  k ~ < ~  . D i f f e r e n t i a t i n g  ( 3 . 2 )  w i t h  r e s p e c t  t o  
y and s w i t c h i n g  o v e r  t o  t h e  v a r i a b l e  z ,  we g e t  A i r y ' s  e q u a t i o n  f o r  t h e  s e c o n d  d e r i v a t i v e  
d 2 f / d z  2. Then i t  i s  e a s y  t o  w r i t e  t h e  s o l u t i o n  f o r  t h e  f u n c t i o n  f i t s e l f  wh ich  s a t i s f i e s  t h e  
n o - s l i p  c o n d i t i o n  a t  t h e  p l a t e  s u r f a c e  y = 0,  i . e o ,  

Z Z u (0 

/=cSdz" ~ Ai(z')dz',;= k2/a. (3.3) 

Here Ai(z') is the Airy function; c is an arbitrary constant. Substitution of Eq. (3.3) in- 

to the basic Eq. (3.2)results in the expression for the constant c=k~[~] -I. 
L ~ j 

The limiting condition at the outer edge of the wall region remains to be satisfied. As 
seen from Eq. (2.5), df/dy § --I as y § ~. This is used to derive the dispersion equation 

]i 
dAi (~) Ai (z) dz = Q = - k ~/3 

dz ,~ 
(3.4) 

relating the frequency of free oscillations to the wave number. It is possible to verify 
that there is an identical expression forthe dispersion relation which determines the sta- 
bility of Poiseuille flow in a plane channel with respect to largewavelength antisymmetric 
disturbances, with the critical layer of neutral disturbances in the neighborhood of the wall. 
The fact that it takes place within a narrow layer has a critical effect on the characteris- 
tics of flow stability. In the first case, the jet is bounded by a stationary region at the 
top and in the second case the upper boundary is the rigid Wall. However, the dispersion 
equation is identical and independent of the type of these boundaries and the nature of the 
fluid flow. 
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It is in=nediately possible to indicate two properties of the solutions which enable us 
to judge the loss of stability of the given flow. In order to do this, we use the well- 
known results of studies on free interaction of boundary layer on a flat plate placed in an 
infinite uniform flow of an incompressible fluid [5, 6]. 

First, there is an infinite set of roots located in the neighborhood of the negative 
real axis corresponding to the given value of k (or >) in the complex plane ~. Let arg ~ = 

= m ~@', arg k = @k �9 Following [13], we put [~[-+oo as ~'l~la/2-+0. We use the asymp- 

t o t i c  expressionAi(,)=2 [  p(-- §  t he  A i r y  f u n c t i o n ,  which remains 

continuous across the negative real axis, to simplify the dispersion Eq. (3.4)~ After a few 
simple transformations, the latter results in two real equations: 

7 

~'l~l'/4sin -~ I~I'/~ + = _ V~IklT/,sin - ~ ,  

from which the statement made above follows directly. In particular, when ~k = (3/7)~ , roots 
of the dispersion equation with large numbers in the complex plane ~ are found on the nega- 
tive real axis. 

Secondly, of all the roots with purely imaginary values of k (playing the fundamental 
role in the study of viscous flow stability), only in one case can the real part of m take 
negative as well as positive values. As regards the real part of m of all the remaining 
roots, it is less than zero, if Ikl ~= 0. The particular case with the real part of m equal 
to zero for the first root ~ corresponds to the Tollmien-Schlichting traveling waves in which 
there are neutral disturbances having a constant amplitude with time. All roots with imagi- 
nary values of k are found by a simple conversion of similar solutions from the boundary lay- 
er-inviscid free interaction theory for a semiinfinite flat plate [5, 6] when the quantity 
Q = :I= ik 4/3 in the right-hand side of the dispersion Eqo (3~ the upper sign being taken 
for Im k > 0, and the lower for Ira k < 0. Actually, both for the jet and the boundary layer 
layer on a semiinfinite flat plate only |Q[ is different whereas arg Q = -~n/6 , the signs 
being chosen as before. Since ~ = m/k2/~, arg m is also identical for the disturbances prop- 
agated in these flows. Using the results given in [5, 6], the absolute values of the criti ~ 
cal wave number k, is immediately found for the neutral disturbances of the fluid jet, with 
Re m = 0 for the first root ~; i.e., k, = 1o0003o 

4. Consider forced oscillations of the jet generated by an oscillator setup on the wall. 
Let it be expressed by the equation y = ~ exp(i~t)h(x), with the function h different from 
zero only in the interval 0 ~ x ~ I Boundary conditions on the vibration wall take the form 

u = O, v = ~a~ e~m h ( z ) .  (4.1) 

As b e f o r e ,  assume t h e  a m p l i t u d e  p a r a m e t e r  a << i i n  t he  boundary  c o n d i t i o n s  (4 .1 )  and 
linearize the equations of fluid motion with respect to this parameter. After eliminating 
the time-dependent quantities from the unknown disturbance functions with the help of the 
equations 

p = ae  ~'~ p ' ( x ) ,  A = ae  i',t A ' ( z . ) ,  

u = y § ae~aj u '(x,  .y), v = ae ~t~t v '(x,  y) ,  (4.2) 

the terms depending on spatial coordinates are expressed in terms of Fourier integrals. Equa- 
tion (2.4) is used to write 

oo 

-p(K) = K"--A(K) = l<f ~ ! e - i~XA ' (x) dx,  

oo ~ (4 ,3)  
-u (K, y) = .i e-iK~ U' (X, y) dx, v (K,y)  = j" e - iKx v' (x, y) dx. 

- - e J o  - - ~  

The function F(K, Y) is introduced as 

-~ = --dF/dy, { = iKF. (4.4) 
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The substitution of Eqs. (4.2)-(4.4) in the equations of motion gives 

daF (o  + 1,;y) ,~F , dY a i . .  ~ -r  i K F  q- /KaA-=O.  (4.5) 

This linear differential equation differs from (3.2) only by the value of the free pa- 
rameter; the coefficients of both equations, when ~=--i~ and K = ik, are, of course, identi- 
cal. it is clear from the above that in the complex plane Z = il/S(~K-=/3 + KX/Sy) it leads 
to the Airy equation for the second derivative d2F/dZ 2. The boundary conditions follow from 
(4.1) 

F = ( f l /K)h ,  d f / d y  = ~  at y = 0  

for Eq. (4.5), where ~(k) is the Fourier transform of the function h(x), giving the form of 
the oscillator. They allow us to conclude that in the complex plane Z, the third derivative 
is given by 

daF/dZ 8 . . . .  K~A " with Z = Z 0 : =  i l / Z ~ K  -2/a. ( 4 . 6 )  

The limiting condition (2.5) gives the requirement 

d f / d Z  --+- - -  ( i K ) - l / a A  at IZl --,- ~ .  ( 4 . 7 )  

The solution of Airy equations satisfying the boundary conditions (4.6) and damping at in- 
finity has the form 

d2F _ K ~  [ ~ l - ~ A i  (Z).  
dZ ~ 

The last equation is integrated once, using the boundary conditions on the vibrating 
wall. The substitution of the result of integration in the limiting conditions (4.7) deter- 
mines the Fourier transform 

- -  h(K) cD(Z ~ (I) (Z ~ = dAi (Z ~ Ai  (Z) dZ  ( 4 . 8 )  
A = - -  (P (zO) _ K" (iK)l/a, d-----Z---- 

of the instantaneous streamline displacement~ 

5. In order to establish the basic characteristics of the velocity field at different 
oscillator frequencies, it is not necessary to know the details of the treatment of integral 
transforms (4.3), which can be understood with the help of techniques developed in [14]. Af- 
ter replacing the real quantities ~ and K in the expressions (4.6) for Z ~ by arbitrary com- 
plex quant!ties--i~ and--• respectively, the numerator of the right-hand side of the equa- 
tions for A is equated to zero. It results in the dispersion equation (3.4)~ relating the 
frequency of free oscillations to the wave numbers. As mentioned above, these fluctuations 
are the limiting form of Tollmien--Schlichting waves (which corresponds to the Reynolds num- 
ber tending to infinity). The fact that the first mode of free oscillations can be stable 
as well as unstable is of special significance. According to computations, the real part of 

for the first root ~i of the dispersion equation (3.4) changes sign when it passes through 
zero with k = • = • Conversion of results from [5, 6] shows that in this case 
m = • = • 

Since ~ = i~, k = ik, the quantity ~ = ~, when K = --k,, as determined by the first root 
Z~ of the dispersion equation. Consider now the inverse Fourier transform in the complex 
plane K, assuming the streamwise coordinate x > 0. In order to ensure the choice of single- 
valued branch of the function K*/s in the expression for Z, we introduce a cut along the posi- 
tive imaginary axis (Fig. 2). Using Cauchy's theorem, the integrals along the real axis are 
given by the product of 2zi and the sum of all residues of the analytical functions within 
the integral and the integrals on either side of the cut. Of the infinite sum of residues 
we take only those that correspond to the first root Z~ of the dispersion equation, where the 
frequency ~ is fixed, and K takes any complex value. Let K, be the value corresponding to 
the first root. Referring to Eq. (4.8), we conclude that the contribution to the expression 
for the instantaneous displacement of streamlines, given by the residues, equals 
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Fig. 2 

3tKlh(K1) I 
e ~xlx, I (Z~) = ~ Ai (Z) dZ. 

(iK1)'3 [2z  Ai + + 2 (z y- Ai 

S i m i l a r  t e rms  p r o p o r t i o n a l  to  exp i k l x  a p p e a r  i n  t h e  e q u a t i o n s  f o r  t h e  r e m a i n i n g  pa rame-  
t e r s  of the fluid. It is clear that as ~ -> ~, -- 2.298, we have Re K, -~ --k, = --1.0003, Im 
K, § 0. Thus, disturbances generated by the oscillator decay at infinity downstream only for 
sufficiently low frequencies ~ < ~,, and, as ~ approaches ~,, the damping rate becomes suffi- 
ciently small. In the limit as ~ = ~,, disturbances become neutral with constant amplitude 
along the jet. However, if it is a high-frequency oscillator with ~ > ~,, disturbances should 
exponentially amplify downstream, as indicated by the above established characteristics of 
the jet stability. 

6. Keeping in mind that the above-described results were obtained in a special dimen- 
sionless reference system, introduced by the Eqs. (2.1), (2.2), and (2.6), the converson of 
frequency m and wave number k in this system to frequency ~ and wave number ~ in the original 
(also dimensionless) system, is carried out with the help of the relations 

co=A2/7~,-s/TRe-2/Tv, k ---- A31~l-51~Re-s/7~z. 

The substitution of these relations in the dispersion equation (3.4) makes it possible 
to express the constant as ~ and ~ =%-"/3v/u2/3 , and its right-hand side Q in the form Q = 
A3,-5/31Re-1 a7/3. 

It is clear from the above that the condition for the stability of freely interacting 
incompressible jet on a flat plate appears as 

A"Ti~ -5/7 Re -"/7 [ a[ ~-~ k .  = 1,0003. ( 6 . 1 )  

A similar condition related to the disturbance frequency of the oscillator has the form 

A~"7~-"/7 Re-~'/~ [ v[ ~ f~. = 2.298. ( 6 . 2 )  

The s i g n  o f  t h e  e q u a t i o n s  i n  e x p r e s s i o n s  ( 6 o l )  and ( 6 . 2 )  c o r r e s p o n d  t o  n e u t r a l  l o n g - w a v e l e n g t h  
d i s t u r b a n c e s  whose a m p l i t u d e  r e m a i n s  c o n s t a n t  i n  t im e  and a l o n g  t h e  j e t .  The change  i n  t h e  
p o s i t i o n  o f  t h e  n e u t r a l  c u r v e  i n  t h e  Re--In [ p l a n e  g e n e r a l l y  used  i n  l i n e a r  s t a b i l i t y  t h e o r y ,  
due to  a v a r i a t i o n  i n  t h e  c o e f f i c i e n t s  A and ~,, can  be e s t i m a t e d  w i t h  t h e  above  f o r m u l a t i o n .  
S i n c e  t he  f i r s t  o f  t h e s e  c o e f f i c i e n t s  i s  d e t e r m i n e d  by t h e  v e l o c i t y  p r o f i l e  i n  t h e  b o u n d a r y  
l a y e r ,  Eqs .  ( 6 . 1 ) ,  ( 6 . 2 )  make i t  p o s s i b l e  t o  compare  d i f f e r e n t  f l u i d  f l o w s  m e n t i o n e d  in  [ 1 - 4 ] .  

T h e r e  does  n o t  seem t o  be  any  e x p e r i m e n t a l  d a t a  on t h e  s t a b i l i t y  o f  such  f l o w s .  How- 
e v e r ,  a l a r g e  number o f  e x p e r i m e n t s  have  been  c o n d u c t e d  on t h e  g rowth  o f  d i s t u r b a n c e s  i n  t h e  
bounda r y  l a y e r  on a f l a t  p l a t e  i n  a u n i f o r m  f l o w  [15,  1 6 ] .  E x p e r i m e n t a l  r e s u l t s  a g r e e  v e r y  
w e l l  w i t h  c o m p u t a t i o n s  o f  t h e  n e u t r a l  c u r v e  u s i n g  l i n e a r  s t a b i l i t y  t h e o r y .  On t h e  o t h e r  h a n d ,  
e x p e r i m e n t a l  d a t a  i n d i c a t e  t h a t  t he  growth  o f  u n s t a b l e  d i s t u r b a n c e s  l e a d s  u l t i m a t e l y  t o  t h e  
breakdown o f  l a m i n a r  f l o w  i n  t h e  b o u n d a r y  l a y e r  and i t s  t r a n s i t i o n  t o  t u r b u l e n c e .  T r a n s i t i o n  
i s  p r e c e d e d  by a h i g h l y  n o n l i n e a r  p r o c e s s  o f  a m p l i f i c a t i o n  o f  d i s t u r b a n c e s  i n  t h e  b a s i c  T o l l -  
mien--S chlich ting waves. 

As shown in [5, 6], the asymptotic behavior of large wavelength disturbances with the 
critical layer of neutral disturbances lying close to the flat plate is correctly established 
with the help of free interaction theory, using Prandtl's boundary layer equations (2.3), 
with the self-induced pressure (2.4), This system was used in [17] to determine the limiting 
solutions branching off from the neutral stability curve, taking into consideration weakly non- 
linear effects. 

The complete set of boundary layer equations, with self-induced pressure, can be used 
to study appreciably nonlinear amplification of unstable Tollmien--Schlichting waves with 
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large period. There is a fundamental interest in the understanding of the following problem: 
Do time-dependent solutions with stochastic properties exist for the above equations? If there 
is a positive solution, then Prandtl's boundary layer equation will be applicable to the 
study of the origin of turbulence. 
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